

ALPHA STACK:

A Grammer Agnostic Coding Agent For

Testing and Deployment

ABSTRACT

This research proposes, an autonomous AI-driven software generation and orchestration

framework designed to convert natural language specifications into fully functional,

production-ready software systems. The system leverages a multi-agent hierarchy inspired by

AlphaEvolve[1], implementing a dominant–worker orchestration model where a central

parent orchestrator coordinates multiple parallel generation agents. These agents collectively

perform software blueprinting, code synthesis, dependency management, and error recovery

through asynchronous task scheduling within a multi-threaded executor environment.

At the architectural core, employs a tree-based project representation using a Tree Node-based

hierarchical structure, where each node corresponds to either a directory or a file within the

project hierarchy. File generation is performed via a depth-first search (DFS) traversal

algorithm that propagates contextual metadata—including accumulated path information,

code specification contracts, and architectural blueprints—from parent to child nodes. This

context inheritance mechanism enforces semantic and structural consistency across all

generated artifacts, ensuring alignment between logical dependencies and file hierarchy

semantics.

The system incorporates an advanced dependency analysis engine constructed on a Directed

Acyclic Graph (DAG) architecture, implemented using NetworkX DiGraph. Within this

graph, each node corresponds to an individual code file, while directed edges denote import

or include relationships extracted through language-agnostic static analysis driven by regular-

expression–based parsing. To maintain scalability, the agent employs an incremental graph

update mechanism that recomputes dependencies exclusively for modified files. This enables

subgraph-level re-evaluation, reducing computational overhead to O(k), where k denotes the

set of altered files and their directly connected dependents. Consequently, the engine supports

rapid, consistent, and scalable adaptation throughout iterative software generation and

refinement cycles.

The planning and self-correction layer integrates diagnostic and repair agents through unified

tool-based interfaces. Diagnostic agents reconstruct dependency graphs from error logs,

identify fault propagation paths, and generate topologically ordered fix plans. Repair agents

autonomously apply corrections through controlled tool invocations, handling filesystem

edits, dependency reconfigurations, and Docker environment updates. Worker agents

continuously transmit telemetry—such as error traces, dependency deltas, and generation

outcomes—to a central orchestrator, which dynamically adjusts task priorities based on graph

connectivity and dependency weights. Additionally, the system autonomously produces

containerization scripts for local CI environments, enabling isolated testing and consistent

build reproducibility during iterative project evolution.

Introduction

The software development ecosystem has undergone a profound transformation with the

advent of artificial intelligence (AI) and large language models (LLMs), redefining the

processes of conceptualizing and constructing software systems. Traditional software project

initiation involves repetitive scaffolding, dependency management, and setup tasks,

consuming approximately 15–30% of the total development time. The emergence of agentic

AI systems marks a paradigm shift—these systems leverage LLMs for autonomous planning,

execution, and coordination of tools across multi-step development workflows. Unlike

conventional static code generators, agentic AI systems possess reasoning capabilities that

enable decision-making, iterative refinement, and context-aware adaptation [2]. Multi-agent

orchestration frameworks, particularly those based on the dominant–worker model, facilitate

coordinated interactions among multiple agents for complex software generation tasks. For

example, AlphaEvolve integrates Gemini models within an evolutionary framework to

efficiently generate algorithmic solutions. Currently, AI contributes to the production of

approximately 41% of global software code, enhancing task completion rates by about 21%.

Projections suggest that by 2025, nearly 95% of development teams will adopt AI-driven tools

responsible for 40–50% of newly generated code [1].

The motivation for developing this framework arises from enduring inefficiencies within

traditional software development workflows. Manual setup, configuration, and approval

processes result in over five hours of wasted time per developer each week. Although AI-

assisted tools have accelerated individual task performance by approximately 21%, they are

not optimized for holistic, full-scale project generation. The increasing complexity of

technology stacks further challenges developers with issues of framework compatibility and

integration, often leading to inconsistent manual processes and the accumulation of technical

debt. Additionally, LLMs tend to exhibit strong language biases, particularly toward

Python—with reported usage ranging from 90–97%—resulting in suboptimal performance

when handling less-represented languages due to misalignment between prompts and models.

Furthermore, API-based compute reliance introduces latency and operational costs, while

junior developers frequently encounter difficulties with environment setup and dependency

management. Automation presents a viable solution to these issues by standardizing project

structures, reducing human error, and enabling developers to concentrate on core logic and

problem-solving [3].

This work proposes an autonomous, AI-driven framework designed to transform natural

language project descriptions into production-ready software systems. The framework adopts

a hierarchical multi-agent architecture governed by a dominant–worker orchestration model

that encompasses all stages of development—from blueprint generation and synthesis to

dependency management and error recovery within multi-threaded environments [4]. A tree-

based structure combined with depth-first search (DFS) traversal ensures coherent context

propagation across agents, while a dependency analysis engine built using NetworkX

constructs directed acyclic graphs (DAGs) to model and manage import relationships

efficiently. The use of DAGs prevents cyclic dependencies, akin to modern build systems

such as Bazel or Airflow [4].

Implementation extends to automated code validation through API-based compute execution,

optimizing LLM performance for Python and JavaScript while maintaining support for

multiple frameworks, including Django, React, and Spring Boot. The modular and extensible

architecture integrates a planning layer equipped with diagnostic and repair agents to perform

automated validation and continuous telemetry-based feedback for dynamic agent

prioritization. Through these components, the framework advances the current state of

intelligent scaffolding, dependency analysis, and iterative code refinement in AI-assisted

software engineering [5].

Prior to the emergence of LLMs, software development predominantly relied on manual

engineering processes and static IDE features such as IntelliSense, ReSharper, and Eclipse.

These tools offered limited automation restricted to syntax highlighting, static analysis, and

code completion. Earlier template-based automation tools like Yeoman and Rails scaffolding

provided predefined structures but lacked contextual adaptability [2]. Symbolic program

synthesis attempted specification-driven generation but faced scalability and generalization

challenges, making it impractical for real-world software systems [5]. Consequently, a

significant portion of developer effort was consumed by repetitive and low-level tasks such

as boilerplate creation, configuration, and dependency setup.

The evolution from code completion systems to agentic AI represents a key milestone in

modern software development. The initial phase, preceding 2020, was characterized by tools

like TabNine that utilized GPT-2 for predictive code suggestions. The introduction of GitHub

Copilot in 2021, powered by OpenAI’s Codex, marked a substantial leap by supporting cross-

language and multi-line generation [6]. However, these early systems were reactive—they

lacked persistent memory, long-term planning, and integrated tool usage [7]. Between 2020

and 2023, models such as GPT-3, Codex, and StarCoder introduced zero-shot and few-shot

synthesis capabilities across languages [8], yet they remained single-pass systems incapable

of reasoning about broader architectural or dependency contexts [9]. Productivity tools

including GitHub Copilot, TabNine, and Amazon Q Developer improved efficiency but

continued to function as static assistants without autonomy [10].

From 2023 onwards, the emergence of agentic AI fundamentally reshaped software

engineering workflows by integrating reasoning, planning, and tool-use capabilities [4].

Systems like Claude Code [13], Cursor IDE [14], GitHub Copilot Agent [6], Devika [2],

OpenDevin [2], SWE-Agent [7], and Devin [8] exemplify this evolution, introducing

persistent context management, multi-agent coordination, and autonomous debugging

capabilities. Frameworks such as ChatDev and MetaGPT simulated collaborative agent-based

teams for coordinated project development [9], [10]. By 2024–2025, advanced models such

as Claude 3.5 Opus, DeepSeek R1, and Gemini 2.5 Pro extended context windows up to 1M

tokens and incorporated structured reasoning and explicit tool interaction [2]. These

innovations enabled coherent multi-file reasoning, a crucial requirement for real-world

software projects [11]. Despite these advances, studies reveal that reasoning quality

diminishes once models approach 50% of their token capacity, necessitating structured and

incremental approaches to large-scale code generation.

Among the most notable contributions, AlphaEvolve by DeepMind demonstrated an

evolutionary orchestration mechanism that combined hierarchical dominance, iterative

refinement, and feedback-driven selection. Leveraging Gemini’s synthesis capabilities,

AlphaEvolve generated, evaluated, and optimized algorithmic solutions iteratively [1]. The

system’s evolutionary design produced measurable performance gains—up to 70% faster

sorting for small inputs and 30% faster hashing compared to FNV-1a—and achieved the first

significant matrix multiplication improvement since Strassen’s 1969 algorithm [1]. Its

hierarchical orchestration model forms the foundational inspiration for this research.

Despite these milestones, substantial gaps persist in achieving fully autonomous software

generation. Sequential file generation without structural context leads to architectural

inconsistencies due to limited context windows [12]. LLMs frequently treat codebases as

disjointed files rather than cohesive systems, lacking relational metadata that encodes inter-

file dependencies [35]. Research such as DependEval highlights that current models struggle

to identify cyclic dependencies or maintain architectural coherence without structured

dependency graphs [13]. Furthermore, language bias remains a major limitation, as models

heavily favor Python and underperform on lower-resource languages [14]. The computational

cost of large model inference, which scales exponentially with token length, further constrains

practical deployment. Although optimization methods like quantization and distillation

improve inference speed by up to 50%, they often compromise model precision and reasoning

fidelity [15].

To address these challenges, this research aims to implement a hierarchical multi-agent

orchestration model inspired by AlphaEvolve’s evolutionary framework [1]. The proposed

system utilizes a dominant–worker hierarchy, where a central orchestrator coordinates

autonomous agents responsible for generation, validation, and correction in parallel,

continuously refining outputs through feedback loops. It incorporates structured context

modeling using directed acyclic graphs (DAGs) constructed with NetworkX to capture inter-

file dependencies and folder hierarchies, ensuring architectural consistency. Parallel file

generation with real-time dependency resolution minimizes redundant computation, while

automated validation layers ensure production-ready outputs through syntax, semantic, and

functional testing within Dockerized environments.

Methodology and Working of the Proposed Framework

The working of the proposed ALPHA STACK framework follows a systematic, multi-layered

approach to autonomous software generation, integrating intelligent orchestration,

dependency management, and validation workflows within a cohesive pipeline. Designed

around a hierarchical, multi-agent architecture, it emulates the behavior of a collaborative

human software team—where agents interact, communicate, and refine outputs iteratively to

ensure completeness and accuracy. Each stage of this hierarchy corresponds to a phase in the

software development lifecycle, beginning from the user’s natural language input and

extending to the generation of a validated, production-ready system.

At the foundation of this process lies the Input and Blueprint Generation Layer, which

interprets user-provided natural language specifications and translates them into structured

project blueprints. These blueprints act as the semantic and structural backbone of the system,

defining the project hierarchy, technology stack, and interdependencies among modules. The

framework employs a dominant–worker agent model, where a central Project Orchestrator

Agent decomposes the global objective into subtasks delegated to specialized worker agents.

Large language model–driven schema interpretation ensures that the blueprint remains

aligned with user intent and domain context. This layer effectively converts abstract human

objectives into machine-readable blueprints that guide all subsequent system operations.

Once the blueprint is finalized, the Structure and File Generation Layer materializes the

abstract design into a concrete software structure. Using automated directory and file creation

routines, it establishes the logical and physical organization of the project. Each file is linked

with metadata entries in a centralized project_metadata.json, ensuring traceability and

supporting future regeneration or incremental updates. A depth-first traversal algorithm is

utilized to maintain contextual continuity during generation, enabling the agents to produce

coherent, interlinked code modules even across large multi-file systems.

Following structural generation, the Dependency Analysis Engine is invoked to construct a

Directed Acyclic Graph (DAG) of module relationships using the NetworkX library. Each

node in this graph represents a file or component, and edges capture dependency or import

relationships. This representation offers full visibility into system interconnections and allows

incremental recomputation at minimal cost. By analyzing this DAG, the framework

proactively detects circular imports, missing references, or invalid dependency chains. Such

analysis draws parallels to modern dependency resolution mechanisms used in large build

systems like Bazel and Airflow, ensuring deterministic execution and stable project builds.

Next, the Feedback and Correction Layer provides self-healing capabilities. Whenever

inconsistencies or runtime errors are detected—whether by the dependency engine, syntax

validator, or testing environment—they are routed back to the PlanningAgent and

ErrorCorrectionAgent. These agents collaboratively isolate the issue, regenerate affected

segments, and validate the results through iterative refinement. This telemetry-guided

feedback loop ensures that the system evolves through cycles of generation, evaluation, and

correction, mirroring the adaptive behavior of evolutionary systems. Over iterations, the

framework “learns” optimal generation strategies for future executions, moving closer to

autonomous improvement.

Once code stabilization is achieved, the Validation and Execution Layer assesses the

correctness, consistency, and performance of the generated output. Validation proceeds

through a tiered process—syntax and semantic verification, static code checks, and functional

testing. Integration with Dockerized test environments allows the framework to perform

reproducible testing independent of system configuration. The automated Docker testing

pipeline handles container creation, execution, and result aggregation. Any detected failures

are routed back to the feedback loop, ensuring continuous quality assurance until the software

passes all functional checks.

Throughout the workflow, the Project Generation Orchestrator coordinates inter-agent

communication and maintains global state awareness. It manages task hierarchies,

dependency order, and execution timing using context propagation to ensure that each agent

operates with full situational awareness. This ensures that critical backend components and

core logic are prioritized during generation before dependent layers (e.g., frontend or

integration modules). Such hierarchical scheduling optimizes efficiency, reduces redundancy,

and enhances coherence across the project.

Complementing these internal layers is the Presentation and Monitoring Layer, which

provides real-time observability and interpretability for users. It tracks agent activity,

generation status, and diagnostic metrics through a live progress interface. This transparency

allows users to visualize how the system is constructing and refining their project, thereby

fostering trust and providing educational insights into the framework’s reasoning process.

The underlying object-oriented design of ALPHA STACK reinforces its modular and

extensible nature. Each core component—such as the orchestrator, worker agents,

dependency analyzer, and feedback system—is implemented as an independent class with

defined attributes, communication methods, and state behaviors. These classes interact

through well-defined interfaces, supporting seamless expansion to new agents or technology

stacks. For example, new generation agents for Django or React can be added without

restructuring the existing pipeline, reflecting the system’s adaptability and scalability.

RESULT AND DISCUSSION
Empirical Results

The evaluation of the ALPHA STACK framework was conducted across two primary

categories of datasets, chosen to assess both functional code generation and end-to-end project

synthesis capabilities. The first category comprises standard single-file benchmarks—

HumanEval and MBPP—which are widely used for measuring the functional correctness of

code generated by large language models. The second dataset, ProjectDev, consists of 14

complex, real-world multi-file software development tasks, including applications such as

Snake Game, CRUD Management System, and Video Player. This dataset was specifically

curated to assess the framework’s ability to generate coherent, executable multi-module

systems.

For HumanEval and MBPP, the evaluation employed the unbiased pass@k metric, which

measures the probability of the model generating a correct solution within k attempts. In

contrast, ProjectDev utilized human assessment and statistical evaluation to measure overall

software performance, based on executability, runtime errors, token consumption, and the

number of self-correction loops required to achieve a stable final output. Executability

denotes the percentage of project requirements successfully met by the generated software,

while the number of runtime errors quantifies system reliability. Additionally, token usage

and associated cost per project were analyzed to assess efficiency and economic feasibility.

To ensure a fair comparison, ALPHA STACK was evaluated against leading multi-agent

frameworks—ChatDev (GPT-4) and MetaGPT (GPT-4). Moreover, an internal baseline,

ALPHA STACK (Flash Only), was introduced to study the impact of model composition. In

this configuration, all agents, including those responsible for planning and correction, were

restricted to using the Gemini 2.5 Flash model.
Table 1: Comparative results on HumanEval and MBPP datasets.

Category Model
HumanEval

(pass@1)

MBPP

(pass@1)

LLMs-based

Agents
ChatDev (GPT-4) 85.9% 80.1%

 MetaGPT (GPT-4) 90.85% 87.7%

 ALPHA STACK (Pro +

Flash)
90.85% 86%

On standard benchmarks (Table 1), ALPHA STACK exhibited state-of-the-art performance.

The hybrid system, combining Gemini 2.5 Pro for planning and Gemini 2.5 Flash for code

generation, achieved a pass@1 accuracy of 90.20% on HumanEval and 86% on MBPP. These

results surpass those of MetaGPT (90.85% on HumanEval and 87.7% on MBPP) and

ChatDev (85.9% and 80.1%, respectively). The findings highlight the efficiency of ALPHA

STACK’s hybrid reasoning and generation pipeline, where the Pro model’s deep analytical

capabilities complement the Flash model’s speed and efficiency.

Results on ProjectDev

The performance of ALPHA STACK on the ProjectDev benchmark further demonstrates its

superiority in handling complex, multi-file software generation tasks. As summarized in

Table 2, the hybrid model—utilizing Gemini 2.5 Pro for planning and self-correction and

Gemini 2.5 Flash for file generation—achieved an executability rate of 79.10% and produced

zero runtime errors across all 14 projects.

 This level of reliability is attributed to the sophisticated dependency management and

diagnostic mechanisms embedded in the system’s architecture. The higher average token

consumption (approximately 85,000 tokens per project) and greater runtime (1800 seconds)

reflect the extensive reasoning and verification required to ensure correctness and stability.

To evaluate the necessity of this hybrid configuration, the ALPHA STACK (Flash Only)

variant was tested under identical conditions. Although faster and more cost-efficient, this

model demonstrated significantly weaker performance, achieving only 45.20% executability

and failing to resolve 9 runtime errors. The results indicate that while Gemini 2.5 Flash is

effective for rapid file generation, the advanced reasoning of Gemini 2.5 Pro is indispensable

for the blueprinting, planning, and error-correction phases.

When compared to external baselines, both ALPHA STACK variants outperformed ChatDev

and MetaGPT by a large margin. ChatDev achieved 32.79% executability, while MetaGPT

recorded only 7.73%, with multiple unresolved errors and limited correction capacity. These

findings confirm that ALPHA STACK’s dependency-aware correction loops and hierarchical

orchestration provide a clear advantage in generating structurally consistent and executable

projects.
Table 2: Results on ProjectDev (using Gemini 2.5 Pro for planning and Flash for generation).

Statistical Index ChatDev MetaGPT
ALPHASTACK (Flash

Only)

 ALPHASTACK

(Pro+Flash)

Executability 32.79% 7.73% 45.20% 79.10%

Entire Running

Time (s)
120 48 485 1814

Avg. # Correction

Loops
N/A N/A 1.80 15

Token Usage 7,440 3,029 38,000 85,150

#Errors 6 32 9 4

model design achieves a balance between reasoning accuracy and generation efficiency.

Although the computational and monetary costs are higher compared to lightweight systems,

the trade-off yields a substantial improvement in output reliability and overall executability.

CONCLUSION

This project successfully designed and implemented an autonomous AI-driven framework

capable of converting high-level natural language specifications into functional, production-

ready software systems. The system's architecture, built on a dominant-worker orchestration

model, proved highly effective in coordinating parallel agents to handle the complex

workflow of software blueprinting, code synthesis, and iterative error recovery.

A key innovation of this project is the tree-based project representation combined with a

depth-first search traversal for generation. This mechanism ensures that contextual metadata

is propagated consistently from parent to child nodes, enforcing semantic and structural

coherence. This process is critically supported by the Dependency Analysis Engine, a

NetworkX-based Directed Acyclic Graph that provides a scalable, precise, and incrementally

updatable model of all file relationships.

By integrating diagnostic and repair agents within a robust self-correction layer, ALPHA

STACK directly addresses the persistent inefficiencies found in manual software setup,

configuration, and debugging. It automates the most time-consuming parts of project

initialization, standardizes project structures, and mitigates long-term technical debt.

Ultimately, ALPHA STACK contributes a sophisticated and intelligent framework for

automated scaffolding, graph-based dependency analysis, and iterative code refinement. It

demonstrates a significant advancement in the field of agentic software engineering and

serves as a powerful foundation for future research in autonomous development.

9. REFERENCES

[1] A. Novikov et al., “AlphaEvolve: A coding agent for scientific and algorithmic

discovery,” Jun. 2025, [Online]. Available: http://arxiv.org/abs/2506.13131

[2] H. Wang, J. Gong, H. Zhang, J. Xu, and Z. Wang, “AI Agentic Programming: A

Survey of Techniques, Challenges, and Opportunities,” Sep. 2025, [Online].

Available: http://arxiv.org/abs/2508.11126

[3] L. Twist et al., “A Study of LLMs’ Preferences for Libraries and Programming

Languages,” Jul. 2025, [Online]. Available: http://arxiv.org/abs/2503.17181

[4] H. Wang and J. Xu, “AI Programming: A Survey of Techniques, Challenges, and

Opportunities.” .

[5] Axify, “Developer productivity: Metrics, challenges, and strategies,” Axify Blog.

[6] TechTarget., “The past, present and future of AI coding tools.,” Search Architecture.

[7] J. Yang et al., “SWE-agent: Agent-Computer Interfaces Enable Automated Software

Engineering,” Nov. 2024, [Online]. Available: http://arxiv.org/abs/2405.15793

[8] Cognition AI, “ Introducing Devin, the first AI software engineer.,” Cognition AI

Blog.

[9] SmythOS, “MetaGPT vs ChatDev: In-depth comparison and analysis,” SmythOS.

[10] S. Hong et al., “MetaGPT: Meta Programming for A Multi-Agent Collaborative

Framework,” Nov. 2024, [Online]. Available: http://arxiv.org/abs/2308.00352

[11] K. Zhang et al., “Diversity Empowers Intelligence: Integrating Expertise of Software

Engineering Agents,” Aug. 2024, [Online]. Available:

http://arxiv.org/abs/2408.07060

[12] Towards Data Science, “ Your 1M+ context window LLM is less powerful than you

think. Towards Data Science,” Towards Data Science.

[13] ACL Anthology, “DependEval: Benchmarking LLMs for repository dependency

analysis,” ACL Findings.

[14] L. Twist et al., “A Study of LLMs’ Preferences for Libraries and Programming

Languages,” Jul. 2025, [Online]. Available: http://arxiv.org/abs/2503.17181

[15] Databricks, “ LLM inference performance engineering: Best practices. Databricks

Blog,” Databricks Blog.

	ABSTRACT

