ALPHA STACK:
A Grammer Agnostic Coding Agent For
Testing and Deployment

ABSTRACT

This research proposes, an autonomous Al-driven software generation and orchestration
framework designed to convert natural language specifications into fully functional,
production-ready software systems. The system leverages a multi-agent hierarchy inspired by
AlphaEvolve[1], implementing a dominant—worker orchestration model where a central
parent orchestrator coordinates multiple parallel generation agents. These agents collectively
perform software blueprinting, code synthesis, dependency management, and error recovery
through asynchronous task scheduling within a multi-threaded executor environment.

At the architectural core, employs a tree-based project representation using a Tree Node-based
hierarchical structure, where each node corresponds to either a directory or a file within the
project hierarchy. File generation is performed via a depth-first search (DFS) traversal
algorithm that propagates contextual metadata—including accumulated path information,
code specification contracts, and architectural blueprints—from parent to child nodes. This
context inheritance mechanism enforces semantic and structural consistency across all
generated artifacts, ensuring alignment between logical dependencies and file hierarchy
semantics.

The system incorporates an advanced dependency analysis engine constructed on a Directed
Acyclic Graph (DAG) architecture, implemented using NetworkX DiGraph. Within this
graph, each node corresponds to an individual code file, while directed edges denote import
or include relationships extracted through language-agnostic static analysis driven by regular-
expression—based parsing. To maintain scalability, the agent employs an incremental graph
update mechanism that recomputes dependencies exclusively for modified files. This enables
subgraph-level re-evaluation, reducing computational overhead to O(k), where k denotes the
set of altered files and their directly connected dependents. Consequently, the engine supports
rapid, consistent, and scalable adaptation throughout iterative software generation and
refinement cycles.

The planning and self-correction layer integrates diagnostic and repair agents through unified
tool-based interfaces. Diagnostic agents reconstruct dependency graphs from error logs,
identify fault propagation paths, and generate topologically ordered fix plans. Repair agents
autonomously apply corrections through controlled tool invocations, handling filesystem
edits, dependency reconfigurations, and Docker environment updates. Worker agents
continuously transmit telemetry—such as error traces, dependency deltas, and generation
outcomes—to a central orchestrator, which dynamically adjusts task priorities based on graph
connectivity and dependency weights. Additionally, the system autonomously produces
containerization scripts for local Cl environments, enabling isolated testing and consistent
build reproducibility during iterative project evolution.

Introduction

The software development ecosystem has undergone a profound transformation with the
advent of artificial intelligence (Al) and large language models (LLMs), redefining the
processes of conceptualizing and constructing software systems. Traditional software project
initiation involves repetitive scaffolding, dependency management, and setup tasks,
consuming approximately 15-30% of the total development time. The emergence of agentic
Al systems marks a paradigm shift—these systems leverage LLMs for autonomous planning,
execution, and coordination of tools across multi-step development workflows. Unlike
conventional static code generators, agentic Al systems possess reasoning capabilities that
enable decision-making, iterative refinement, and context-aware adaptation [2]. Multi-agent
orchestration frameworks, particularly those based on the dominant—worker model, facilitate
coordinated interactions among multiple agents for complex software generation tasks. For
example, AlphaEvolve integrates Gemini models within an evolutionary framework to
efficiently generate algorithmic solutions. Currently, Al contributes to the production of
approximately 41% of global software code, enhancing task completion rates by about 21%.
Projections suggest that by 2025, nearly 95% of development teams will adopt Al-driven tools
responsible for 40-50% of newly generated code [1].

The motivation for developing this framework arises from enduring inefficiencies within
traditional software development workflows. Manual setup, configuration, and approval
processes result in over five hours of wasted time per developer each week. Although Al-
assisted tools have accelerated individual task performance by approximately 21%, they are
not optimized for holistic, full-scale project generation. The increasing complexity of
technology stacks further challenges developers with issues of framework compatibility and
integration, often leading to inconsistent manual processes and the accumulation of technical
debt. Additionally, LLMs tend to exhibit strong language biases, particularly toward
Python—with reported usage ranging from 90-97%—resulting in suboptimal performance
when handling less-represented languages due to misalignment between prompts and models.
Furthermore, API-based compute reliance introduces latency and operational costs, while
junior developers frequently encounter difficulties with environment setup and dependency
management. Automation presents a viable solution to these issues by standardizing project
structures, reducing human error, and enabling developers to concentrate on core logic and
problem-solving [3].

This work proposes an autonomous, Al-driven framework designed to transform natural
language project descriptions into production-ready software systems. The framework adopts
a hierarchical multi-agent architecture governed by a dominant—worker orchestration model
that encompasses all stages of development—from blueprint generation and synthesis to
dependency management and error recovery within multi-threaded environments [4]. A tree-
based structure combined with depth-first search (DFS) traversal ensures coherent context
propagation across agents, while a dependency analysis engine built using NetworkX
constructs directed acyclic graphs (DAGs) to model and manage import relationships
efficiently. The use of DAGs prevents cyclic dependencies, akin to modern build systems
such as Bazel or Airflow [4].

Implementation extends to automated code validation through API-based compute execution,
optimizing LLM performance for Python and JavaScript while maintaining support for
multiple frameworks, including Django, React, and Spring Boot. The modular and extensible
architecture integrates a planning layer equipped with diagnostic and repair agents to perform
automated validation and continuous telemetry-based feedback for dynamic agent
prioritization. Through these components, the framework advances the current state of
intelligent scaffolding, dependency analysis, and iterative code refinement in Al-assisted
software engineering [5].

Prior to the emergence of LLMs, software development predominantly relied on manual
engineering processes and static IDE features such as IntelliSense, ReSharper, and Eclipse.
These tools offered limited automation restricted to syntax highlighting, static analysis, and
code completion. Earlier template-based automation tools like Yeoman and Rails scaffolding
provided predefined structures but lacked contextual adaptability [2]. Symbolic program
synthesis attempted specification-driven generation but faced scalability and generalization
challenges, making it impractical for real-world software systems [5]. Consequently, a
significant portion of developer effort was consumed by repetitive and low-level tasks such
as boilerplate creation, configuration, and dependency setup.

The evolution from code completion systems to agentic Al represents a key milestone in
modern software development. The initial phase, preceding 2020, was characterized by tools
like TabNine that utilized GPT-2 for predictive code suggestions. The introduction of GitHub
Copilot in 2021, powered by OpenAl’s Codex, marked a substantial leap by supporting cross-
language and multi-line generation [6]. However, these early systems were reactive—they
lacked persistent memory, long-term planning, and integrated tool usage [7]. Between 2020
and 2023, models such as GPT-3, Codex, and StarCoder introduced zero-shot and few-shot
synthesis capabilities across languages [8], yet they remained single-pass systems incapable
of reasoning about broader architectural or dependency contexts [9]. Productivity tools
including GitHub Copilot, TabNine, and Amazon Q Developer improved efficiency but
continued to function as static assistants without autonomy [10].

From 2023 onwards, the emergence of agentic Al fundamentally reshaped software
engineering workflows by integrating reasoning, planning, and tool-use capabilities [4].
Systems like Claude Code [13], Cursor IDE [14], GitHub Copilot Agent [6], Devika [2],
OpenDevin [2], SWE-Agent [7], and Devin [8] exemplify this evolution, introducing
persistent context management, multi-agent coordination, and autonomous debugging
capabilities. Frameworks such as ChatDev and MetaGPT simulated collaborative agent-based
teams for coordinated project development [9], [10]. By 2024-2025, advanced models such
as Claude 3.5 Opus, DeepSeek R1, and Gemini 2.5 Pro extended context windows up to 1M
tokens and incorporated structured reasoning and explicit tool interaction [2]. These
innovations enabled coherent multi-file reasoning, a crucial requirement for real-world
software projects [11]. Despite these advances, studies reveal that reasoning quality
diminishes once models approach 50% of their token capacity, necessitating structured and
incremental approaches to large-scale code generation.

Among the most notable contributions, AlphaEvolve by DeepMind demonstrated an
evolutionary orchestration mechanism that combined hierarchical dominance, iterative

refinement, and feedback-driven selection. Leveraging Gemini’s synthesis capabilities,
AlphaEvolve generated, evaluated, and optimized algorithmic solutions iteratively [1]. The
system’s evolutionary design produced measurable performance gains—up to 70% faster
sorting for small inputs and 30% faster hashing compared to FNV-1a—and achieved the first
significant matrix multiplication improvement since Strassen’s 1969 algorithm [1]. Its
hierarchical orchestration model forms the foundational inspiration for this research.

Despite these milestones, substantial gaps persist in achieving fully autonomous software
generation. Sequential file generation without structural context leads to architectural
inconsistencies due to limited context windows [12]. LLMs frequently treat codebases as
disjointed files rather than cohesive systems, lacking relational metadata that encodes inter-
file dependencies [35]. Research such as DependEval highlights that current models struggle
to identify cyclic dependencies or maintain architectural coherence without structured
dependency graphs [13]. Furthermore, language bias remains a major limitation, as models
heavily favor Python and underperform on lower-resource languages [14]. The computational
cost of large model inference, which scales exponentially with token length, further constrains
practical deployment. Although optimization methods like quantization and distillation
improve inference speed by up to 50%, they often compromise model precision and reasoning
fidelity [15].

To address these challenges, this research aims to implement a hierarchical multi-agent
orchestration model inspired by AlphaEvolve’s evolutionary framework [1]. The proposed
system utilizes a dominant—worker hierarchy, where a central orchestrator coordinates
autonomous agents responsible for generation, validation, and correction in parallel,
continuously refining outputs through feedback loops. It incorporates structured context
modeling using directed acyclic graphs (DAGS) constructed with NetworkX to capture inter-
file dependencies and folder hierarchies, ensuring architectural consistency. Parallel file
generation with real-time dependency resolution minimizes redundant computation, while
automated validation layers ensure production-ready outputs through syntax, semantic, and
functional testing within Dockerized environments.

Methodology and Working of the Proposed Framework

The working of the proposed ALPHA STACK framework follows a systematic, multi-layered
approach to autonomous software generation, integrating intelligent orchestration,
dependency management, and validation workflows within a cohesive pipeline. Designed
around a hierarchical, multi-agent architecture, it emulates the behavior of a collaborative
human software team—where agents interact, communicate, and refine outputs iteratively to
ensure completeness and accuracy. Each stage of this hierarchy corresponds to a phase in the
software development lifecycle, beginning from the user’s natural language input and
extending to the generation of a validated, production-ready system.

At the foundation of this process lies the Input and Blueprint Generation Layer, which
interprets user-provided natural language specifications and translates them into structured
project blueprints. These blueprints act as the semantic and structural backbone of the system,
defining the project hierarchy, technology stack, and interdependencies among modules. The
framework employs a dominant—worker agent model, where a central Project Orchestrator
Agent decomposes the global objective into subtasks delegated to specialized worker agents.
Large language model-driven schema interpretation ensures that the blueprint remains
aligned with user intent and domain context. This layer effectively converts abstract human
objectives into machine-readable blueprints that guide all subsequent system operations.

Froject Ready

-

Once the blueprint is finalized, the Structure and File Generation Layer materializes the
abstract design into a concrete software structure. Using automated directory and file creation
routines, it establishes the logical and physical organization of the project. Each file is linked
with metadata entries in a centralized project_metadata.json, ensuring traceability and
supporting future regeneration or incremental updates. A depth-first traversal algorithm is

utilized to maintain contextual continuity during generation, enabling the agents to produce
coherent, interlinked code modules even across large multi-file systems.

Following structural generation, the Dependency Analysis Engine is invoked to construct a
Directed Acyclic Graph (DAG) of module relationships using the NetworkX library. Each
node in this graph represents a file or component, and edges capture dependency or import
relationships. This representation offers full visibility into system interconnections and allows
incremental recomputation at minimal cost. By analyzing this DAG, the framework
proactively detects circular imports, missing references, or invalid dependency chains. Such
analysis draws parallels to modern dependency resolution mechanisms used in large build
systems like Bazel and Airflow, ensuring deterministic execution and stable project builds.

Next, the Feedback and Correction Layer provides self-healing capabilities. Whenever
inconsistencies or runtime errors are detected—whether by the dependency engine, syntax
validator, or testing environment—they are routed back to the PlanningAgent and
ErrorCorrectionAgent. These agents collaboratively isolate the issue, regenerate affected
segments, and validate the results through iterative refinement. This telemetry-guided
feedback loop ensures that the system evolves through cycles of generation, evaluation, and
correction, mirroring the adaptive behavior of evolutionary systems. Over iterations, the
framework “learns” optimal generation strategies for future executions, moving closer to
autonomous improvement.

Once code stabilization is achieved, the Validation and Execution Layer assesses the
correctness, consistency, and performance of the generated output. Validation proceeds
through a tiered process—syntax and semantic verification, static code checks, and functional
testing. Integration with Dockerized test environments allows the framework to perform
reproducible testing independent of system configuration. The automated Docker testing
pipeline handles container creation, execution, and result aggregation. Any detected failures
are routed back to the feedback loop, ensuring continuous quality assurance until the software
passes all functional checks.

ALPHA STAik System v l'
N Monitor Generation - N
Generate Software Project View Generated Project
Progress
‘ \N
Generate Blueprint Generate Structure | Generate Files | Analyze Dependencies | Resolve Errors | Test Project in Docker Finalize Project |

Throughout the workflow, the Project Generation Orchestrator coordinates inter-agent
communication and maintains global state awareness. It manages task hierarchies,
dependency order, and execution timing using context propagation to ensure that each agent
operates with full situational awareness. This ensures that critical backend components and
core logic are prioritized during generation before dependent layers (e.g., frontend or
integration modules). Such hierarchical scheduling optimizes efficiency, reduces redundancy,
and enhances coherence across the project.

Complementing these internal layers is the Presentation and Monitoring Layer, which
provides real-time observability and interpretability for users. It tracks agent activity,
generation status, and diagnostic metrics through a live progress interface. This transparency
allows users to visualize how the system is constructing and refining their project, thereby
fostering trust and providing educational insights into the framework’s reasoning process.

The underlying object-oriented design of ALPHA STACK reinforces its modular and
extensible nature. Each core component—such as the orchestrator, worker agents,
dependency analyzer, and feedback system—is implemented as an independent class with
defined attributes, communication methods, and state behaviors. These classes interact
through well-defined interfaces, supporting seamless expansion to new agents or technology
stacks. For example, new generation agents for Django or React can be added without
restructuring the existing pipeline, reflecting the system’s adaptability and scalability.

RESULT AND DISCUSSION

Empirical Results

The evaluation of the ALPHA STACK framework was conducted across two primary
categories of datasets, chosen to assess both functional code generation and end-to-end project
synthesis capabilities. The first category comprises standard single-file benchmarks—
HumanEval and MBPP—which are widely used for measuring the functional correctness of
code generated by large language models. The second dataset, ProjectDev, consists of 14
complex, real-world multi-file software development tasks, including applications such as
Snake Game, CRUD Management System, and Video Player. This dataset was specifically
curated to assess the framework’s ability to generate coherent, executable multi-module
systems.

For HumanEval and MBPP, the evaluation employed the unbiased pass@k metric, which
measures the probability of the model generating a correct solution within k attempts. In
contrast, ProjectDev utilized human assessment and statistical evaluation to measure overall
software performance, based on executability, runtime errors, token consumption, and the
number of self-correction loops required to achieve a stable final output. Executability
denotes the percentage of project requirements successfully met by the generated software,
while the number of runtime errors quantifies system reliability. Additionally, token usage
and associated cost per project were analyzed to assess efficiency and economic feasibility.
To ensure a fair comparison, ALPHA STACK was evaluated against leading multi-agent
frameworks—ChatDev (GPT-4) and MetaGPT (GPT-4). Moreover, an internal baseline,
ALPHA STACK (Flash Only), was introduced to study the impact of model composition. In
this configuration, all agents, including those responsible for planning and correction, were
restricted to using the Gemini 2.5 Flash model.

Table 1: Comparative results on HumanEval and MBPP datasets.

HumanEval MBPP
Category Model (pass@1) (pass@1)
LL Ms-based ChatDev (GPT-4) 85.9% 80.1%
Agents
MetaGPT (GPT-4) 90.85% 87.7%
ALPHA STACK (Pro +
Flash) 90.85% 86%

On standard benchmarks (Table 1), ALPHA STACK exhibited state-of-the-art performance.
The hybrid system, combining Gemini 2.5 Pro for planning and Gemini 2.5 Flash for code

generation, achieved a pass@1 accuracy of 90.20% on HumanEval and 86% on MBPP. These
results surpass those of MetaGPT (90.85% on HumanEval and 87.7% on MBPP) and
ChatDev (85.9% and 80.1%, respectively). The findings highlight the efficiency of ALPHA
STACK’s hybrid reasoning and generation pipeline, where the Pro model’s deep analytical
capabilities complement the Flash model’s speed and efficiency.

Results on ProjectDev

The performance of ALPHA STACK on the ProjectDev benchmark further demonstrates its
superiority in handling complex, multi-file software generation tasks. As summarized in
Table 2, the hybrid model—utilizing Gemini 2.5 Pro for planning and self-correction and
Gemini 2.5 Flash for file generation—achieved an executability rate of 79.10% and produced
zero runtime errors across all 14 projects.

This level of reliability is attributed to the sophisticated dependency management and
diagnostic mechanisms embedded in the system’s architecture. The higher average token
consumption (approximately 85,000 tokens per project) and greater runtime (1800 seconds)
reflect the extensive reasoning and verification required to ensure correctness and stability.
To evaluate the necessity of this hybrid configuration, the ALPHA STACK (Flash Only)
variant was tested under identical conditions. Although faster and more cost-efficient, this
model demonstrated significantly weaker performance, achieving only 45.20% executability
and failing to resolve 9 runtime errors. The results indicate that while Gemini 2.5 Flash is
effective for rapid file generation, the advanced reasoning of Gemini 2.5 Pro is indispensable
for the blueprinting, planning, and error-correction phases.

When compared to external baselines, both ALPHA STACK variants outperformed ChatDev
and MetaGPT by a large margin. ChatDev achieved 32.79% executability, while MetaGPT
recorded only 7.73%, with multiple unresolved errors and limited correction capacity. These
findings confirm that ALPHA STACK’s dependency-aware correction loops and hierarchical
orchestration provide a clear advantage in generating structurally consistent and executable
projects.

Table 2: Results on ProjectDev (using Gemini 2.5 Pro for planning and Flash for generation).

Statistical Index ChatDev MetaGPT ALPHASTACK (Flash ALPHASTACK

Only) (Pro+Flash)
Executability 32.79% 7.73% 45.20% 79.10%
Entre — Running 1,5 4g 485 1814
Time (S)
Avg. # Correction N/A N/A 1.80 15
Loops
Token Usage 7,440 3,029 38,000 85,150
#Errors 6 32 9 4

model design achieves a balance between reasoning accuracy and generation efficiency.
Although the computational and monetary costs are higher compared to lightweight systems,
the trade-off yields a substantial improvement in output reliability and overall executability.

CONCLUSION

This project successfully designed and implemented an autonomous Al-driven framework
capable of converting high-level natural language specifications into functional, production-
ready software systems. The system's architecture, built on a dominant-worker orchestration
model, proved highly effective in coordinating parallel agents to handle the complex
workflow of software blueprinting, code synthesis, and iterative error recovery.

A key innovation of this project is the tree-based project representation combined with a
depth-first search traversal for generation. This mechanism ensures that contextual metadata
is propagated consistently from parent to child nodes, enforcing semantic and structural
coherence. This process is critically supported by the Dependency Analysis Engine, a
NetworkX-based Directed Acyclic Graph that provides a scalable, precise, and incrementally
updatable model of all file relationships.

By integrating diagnostic and repair agents within a robust self-correction layer, ALPHA
STACK directly addresses the persistent inefficiencies found in manual software setup,
configuration, and debugging. It automates the most time-consuming parts of project
initialization, standardizes project structures, and mitigates long-term technical debt.
Ultimately, ALPHA STACK contributes a sophisticated and intelligent framework for
automated scaffolding, graph-based dependency analysis, and iterative code refinement. It
demonstrates a significant advancement in the field of agentic software engineering and
serves as a powerful foundation for future research in autonomous development.

9. REFERENCES

[1]
[2]

[3]
[4]
[5]
[6]
[7]
[8]

[9]
[10]

[11]

[12]
[13]
[14]

[15]

A. Novikov et al., “AlphaEvolve: A coding agent for scientific and algorithmic
discovery,” Jun. 2025, [Online]. Available: http://arxiv.org/abs/2506.13131

H. Wang, J. Gong, H. Zhang, J. Xu, and Z. Wang, “Al Agentic Programming: A
Survey of Techniques, Challenges, and Opportunities,” Sep. 2025, [Online].
Available: http://arxiv.org/abs/2508.11126

L. Twist et al., “A Study of LLMs’ Preferences for Libraries and Programming
Languages,” Jul. 2025, [Online]. Available: http://arxiv.org/abs/2503.17181

H. Wang and J. Xu, “Al Programming: A Survey of Techniques, Challenges, and
Opportunities.” .

Axify, “Developer productivity: Metrics, challenges, and strategies,” Axify Blog.
TechTarget., “The past, present and future of Al coding tools.,” Search Architecture.
J. Yang et al., “SWE-agent: Agent-Computer Interfaces Enable Automated Software
Engineering,” Nov. 2024, [Online]. Available: http://arxiv.org/abs/2405.15793
Cognition Al, “ Introducing Devin, the first Al software engineer.,” Cognition Al
Blog.

SmythOS, “MetaGPT vs ChatDev: In-depth comparison and analysis,” SmythOS.

S. Hong et al., “MetaGPT: Meta Programming for A Multi-Agent Collaborative
Framework,” Nov. 2024, [Online]. Available: http://arxiv.org/abs/2308.00352

K. Zhang et al., “Diversity Empowers Intelligence: Integrating Expertise of Software
Engineering Agents,” Aug. 2024, [Online]. Available:
http://arxiv.org/abs/2408.07060

Towards Data Science, “ Your 1M+ context window LLM is less powerful than you
think. Towards Data Science,” Towards Data Science.

ACL Anthology, “DependEval: Benchmarking LLMs for repository dependency
analysis,” ACL Findings.

L. Twist et al., “A Study of LLMs’ Preferences for Libraries and Programming
Languages,” Jul. 2025, [Online]. Available: http://arxiv.org/abs/2503.17181
Databricks, “ LLM inference performance engineering: Best practices. Databricks
Blog,” Databricks Blog.

	ABSTRACT

